Solution file HW4
-n 2 i s 10 pt and 2/2/2/4
2. $f(x)=\frac{1}{10}$ for $-5 \leq x \leq 5$ and $=0$ otherwise
a. $P(X<0)=\int_{-5}^{0} \frac{1}{10} d x=.5$.
b. $\quad P(-2.5<X<2.5)=\int_{-2.5}^{2.5} \frac{1}{10} d x=.5$.
c. $\quad P(-2 \leq X \leq 3)=\int_{-2}^{3} \frac{1}{10} d x=.5$.
d. $\left.P(k<X<k+4)=\int_{k}^{k+4} \frac{1}{10} d x=\frac{1}{10} x\right]_{k}^{k+4}=\frac{1}{10}[(k+4)-k]=.4$.

Q-n 11 is 10 pt and $1 / 1 / 1 / 2 / 1 / 1 / 1 / 2$
11.
a. $\quad P(X \leq 1)=F(1)=\frac{1^{2}}{4}=25$.
b. $\quad P(.5 \leq X \leq 1)=F(1)-F(.5)=\frac{1^{2}}{4}-\frac{5^{2}}{4}=.1875$.
c. $\quad P(X>1.5)=1-P(X \leq 1.5)=1-F(1.5)=1-\frac{1.5^{2}}{4}=.4375$.
d. $.5=F(\tilde{\mu})=\frac{\tilde{\mu}^{2}}{4} \Rightarrow \tilde{\mu}^{2}=2 \Rightarrow \tilde{\mu}=\sqrt{2} \approx 1.414$.
e. $f(x)=F(x)=\frac{x}{2}$ for $0 \leq x<2$, and $=0$ otherwise.
f. $\left.E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{2} x \cdot \frac{x}{2} d x=\frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{x^{3}}{6}\right]_{0}^{2}=\frac{8}{6} \approx 1.333$.
g. $\left.E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{2} x^{2} \frac{x}{2} d x=\frac{1}{2} \int_{0}^{2} x^{3} d x=\frac{x^{4}}{8}\right]_{0}^{2}=2$, so $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=$ $2-\left(\frac{8}{6}\right)^{2}=\frac{8}{36} \approx .222$, and $\sigma_{X}=\sqrt{.222}=.471$.
h. From $\mathrm{g}, E\left(X^{2}\right)=2$.

Q-n 14 is 10 pts and $2 / 2 / 2 / 4$. In part a), give 1 pt for the mean and 1 pt for the variance. In part 3 , also give 1 pt for each separate question. In part d), give 2 pts for each question.
14.
a. If X is uniformly distributed on the interval from A to B, then $E(X)=\int_{A}^{B} x \cdot \frac{1}{B-A} d x=\frac{A+B}{2}$, the midpoint of the interval. Also, $E\left(X^{2}\right)=\frac{A^{2}+A B+B^{2}}{3}$, from which $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\ldots=$ $\frac{(B-A)^{2}}{12}$.
With $A=7.5$ and $B=20, E(X)=13.75$ and $V(X)=13.02$.
b. From Example 4.6, the complete cdf is $F(x)=\left\{\begin{array}{ll}0 & x<7.5 \\ \frac{x-7.5}{12.5} & 7.5 \leq x<20 . \\ 1 & 20 \leq x\end{array}\right.$.
c. $P(X \leq 10)=F(10)=.200 ; P(10 \leq X \leq 15)=F(15)-F(10)=.4$.
d. $\quad \sigma=\sqrt{13.02}=3.61$, so $\mu \pm \sigma=(10.14,17.36)$. Thus, $P(\mu-\sigma \leq X \leq \mu+\sigma)=$ $P(10.14 \leq X \leq 17.36)=F(17.36)-F(10.14)=.5776$.
Similarly, $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=P(6.53 \leq X \leq 20.97)=1$.

Q-n 29 is 10 pt and $2 / 2 / 2 / 2 / 2$
29.
a. .9838 is found in the 2.1 row and the .04 column of the standard normal table so $c=2.14$.
b. $\quad P(0 \leq Z \leq c)=.291 \Rightarrow \Phi(c)-\Phi(0)=.2910 \Rightarrow \Phi(c)-.5=.2910 \Rightarrow \Phi(c)=.7910 \Rightarrow$ from the standard normal table, $c=.81$.
c. $P(c \leq Z)=.121 \Rightarrow 1-P(Z<c)=.121 \Rightarrow 1-\Phi(c)=.121 \Rightarrow \Phi(c)=.879 \Rightarrow c=1.17$.
d. $P(-c \leq Z \leq c)=\Phi(c)-\Phi(-c)=\Phi(c)-(1-\Phi(c))=2 \Phi(c)-1=.668 \Rightarrow \Phi(c)=.834 \Rightarrow$ $c=0.97$.
e. $P(c \leq|Z|)=1-P(|Z|<c)=1-[\Phi(c)-\Phi(-c)]=1-[2 \Phi(c)-1]=2-2 \Phi(c)=.016 \Rightarrow \Phi(c)=.992 \Rightarrow$ $c=2.41$.
32.
a. $\quad P(X \leq 15)=P\left(Z \leq \frac{15-15.0}{1.25}\right)=P(Z \leq 0)=\Phi(0.00)=.5000$.
b. $\quad P(X \leq 17.5)=P\left(Z \leq \frac{17.5-15.0}{1.25}\right)=P(Z \leq 2)=\Phi(2.00)=.9772$.
c. $\quad P(X \geq 10)=P\left(Z \geq \frac{10-15.0}{1.25}\right)=P(Z \geq-4)=1-\Phi(-4.00)=1-.0000=1$.
d. $P(14 \leq X \leq 18)=P\left(\frac{14-15.0}{1.25} \leq Z \leq \frac{18-15.0}{1.25}\right)=P(-.8 \leq Z \leq 2.4)=\Phi(2.40)-\Phi(-0.80)=.9918-$ $.2119=.7799$.
e. $\quad P(|X-15| \leq 3)=P(-3 \leq X-15 \leq 3)=P(12 \leq X \leq 18)=P(-2.4 \leq Z \leq 2.4)=$ $\Phi(2.40)-\Phi(-2.40)=.9918-.0082=.9836$.

